1

1

Rabu, 25 Maret 2015

Energi Panas Bumi


Energi panas bumi di dekat tanaman Reykjavik. Iceland memilik jumlah energi panas bumi yang cukup banyak. 

Energi Geo (Bumi) thermal (panas) berarti memanfaatkan panas dari dalam bumi. Inti planet kita sangat panas- estimasi saat ini adalah 5,500 celcius (9,932 F)- jadi tidak mengherankan jika tiga meter teratas permukaan bumi tetap konstan mendekati 10-16 Celcius (50-60 F) setiap tahun. Berkat berbagai macam proses geologi, pada beberapa tempat temperatur yang lebih tinggi dapat ditemukan di beberapa tempat.

Menempatkan panas untuk bekerja
Dimana ada sumber air panas geothermal dekat permukaan, air panas itu dapat langsung dipipakan ke tempat yang membutuhkan panas. Ini adalah salah satu cara geothermal digunakan untuk menenuhi kebutuhan air panas, menghangatkan rumah, untuk menghangatkan rumah kaca dan bahkan mencairkan salju di jalan.
Bahkan di tempat dimana penyimpanan panas bumi tidak mudah diakses, pompa pemanas tanah dapat membahwa kehangatan ke permukaan dan kedalam gedung. Cara ini bekerja dimana saja karena temparatur di bawah tanah tetap konstan selama tahunan. Sistem yang sama dapat digunakan untuk menghangatkan gedung di musim dingin dan mendinginkan gedung di musim panas.

Pembangkit listrik
Pembangkit Listrik tenaga geothermal menggunakan sumur dengan kedalaman sampai 1.5 KM atau lebih untuk mencapai cadangan panas bumi yang sangat panas. Beberapa pembangkit listrik  ini menggunakan panas dari cadangan untuk secara langsung dialirkan guna menggerakan turbin. Yang lainnya memompa air panas bertekanan tinggi ke dalam tangki bertekanan rendah. Hal ini menyebabkan "kilatan panas" yang digunakan untuk menjalankan generator turbin. Pembangkit listrik paling baru menggunakan air panas dari tanah untuk memanaskan cairan lain, seperti isobutene, yang dipanaskan pada temperatur rendah yang lebih rendah dari air. Ketika cairan ini menguap dan mengembang, maka cairan ini akan menggerakan turbin generator.

Keuntungan Tenaga Panas Bumi
Pembangkit listrik tenaga Panas Bumi  hampir tidak menimpulkan polusi atau emisi gas rumah kaca. Tenaga ini juga tidak berisik dan dapat diandalkan. Pembangkit listik tenaga geothermal menghasilkan listrik sekitar 90%, dibandingkan 65-75 persen pembangkit listrik berbahan bakar fosil.
Sayangnya, bahkan di banyak negara dengan cadangan panas bumi melimpah seperti Indonesia yang memilikoo 40 % cadangan panas bumi dunia, sumber energi terbarukan yang telah terbukti bersih ini tidak dimanfaatkan secara besar-besaran.

Minggu, 22 Maret 2015

PRINSIP KERJA OVEN MICROWAVE

Anda pasti pernah melihat oven microwave kan?? Jika belum, pernatikan gambar ini. 
 
 
 
Oven microwave merupakan perangkat yang dengan cepat telah menjadi alat masak populer. kelebuhannya adalah menghemat waktu dan hemat listrik, karena tidak perlu dipanaskan terlebih dahulu seperti alat masak lainnya yang perlu dipanaskan terlebih dahulu. Prinsip kerja dari alat ini (oven microwave) adalah perpindahan kalor secara radiasi.
Gelombang micro, salah satu bentuk gelombang elektromagnetik yang memiliki sifat mudah diserap oleh molekul-molekul air (H2O). Gelombang micro dalam  sebuah oven microwave dihasilkan secara elektronik dan didistribusikan melalui pemantulan oleh kipas dan dinding-dinding metal. Karena dinding-dinding metal ini memantulkan energi radiasi gelombang micro, maka dinding ini tidak menjadi panas. Jadi, oven microwave sangat efisien, karena hanya memanaskan makanan saja.
Di dalam makanan, gelombang micro menyebar melalui proses perpindahan kalor secara konduksi. Oven microwave cenderung lebih cepat memasak makanan yang berair dibandingkan dengan makanan kering, karena di dalam makanan berair, lebih banyak air yang mampu menyerap gelombang micro. Namun demikian, gelombang micro tidak mampu menembus makanan cukup dalam, sehingga untuk memasak makanan yang tebal, sebaiknya makanan tersebut dipotong-potong dulu menjadi lebih kecil.
gelombang micro dapat melalui bahan kaca, kertas, keramik, dan plastik. Sehingga wadah-wadah yang terbuat dari benda ini cukup aman untuk digunakan dalam sebuah oven microwave. Perhatikan, biasanya pada sebuah wadah yang diberikan informasi apakah aman atau tidak. wadah-wadah yang terbuat dari logam tidak cocok untuk dipakai dalm oven ini karena sifatnya yang memantulkan radiasi gelombang micro.
Bagian tutup oven microwave, atau disebut pintu di mana kita melihat makanan yang sedang dimasak, memiliki dasain yang cukup aman sehingga tidak terjadi kebocoran gelombang micro. Kebocoran gelombang micro menyebabkan proses memasak mejadi tidak efektif dan dapat menyebabkan proses memasak jadi efektif dan dapat menyebabkan gangguan kesehatan bagi seseorang yang berada di dekatnya. Pintu oven microwave juga dibuat secara otomatis sebagai sakelar. sehingga ketika pintu terbuka otomatis oven tidak bekerja.
Oven microwave ditemukan secara tidak adil sengaja oleh seseorang teknisi Percy L. Spencer dari Raytheon Company. Pada tahun 1945. Ketika ia sedang melakukan percobaan untuk menghasilkan gelombang radio bagi sistem radar. Ketika sedang berdiri di dekat pembangkit gelombang micro, ia mendapati bahwa permen yang disakunya meleleh meskipun ia tidak merasakan adanya panas. Penemuan ini akhirnya dikembangkan dan pada awal tahun 1950 diperkenalkanlah oven microwave yang pertama.

Sabtu, 21 Maret 2015

Siklus Brayton



Siklus Brayton menjadi konsep dasar untuk setiap mesin turbin gas. Siklus termodinamika ini dikembangkan pertama kali oleh John Barber pada tahun 1791, dan disempurnakan lebih lanjut oleh George Brayton. Pada awal penerapan siklus ini, Brayton dan ilmuwan lainnya mengembangkan mesin reciprocating dikombinasikan dengan kompresor. Mesin tersebut berdampingan dengan mesin Otto diaplikasikan pertama kali ke otomotif roda empat. Namun mesin Brayton kalah pamor dengan mesin Otto empat silinder yang dikembangkan oleh Henry Ford. Pada perkembangan selanjutnya, siklus Brayton lebih diaplikasikan khusus ke mesin-mesin turbojet dan turbin gas.

20140312-124729 PM.jpg
 Mesin Turbojet Pesawat Terbang

Untuk memudahkan memahami siklus Brayton, sangat disarankan bagi Anda untuk mengetahui prinsip kerja turbin gas. Kita ambil contoh mesin turbojet pesawat terbang. Mesin ini menggunakan media kerja udara atmosfer. Sisi inlet kompresor menghisap udara atmosfer, dan udara panas yang telah melewati turbin keluar ke atmosfer lagi. Sekalipun sistem turbojet ini nampak merupakan siklus terbuka, untuk kebutuhan analisa termodinamika, mari kita asumsikan udara yang keluar turbin gas akan menjadi inlet untuk kompresor. Sehingga untuk menganalisa siklus Brayton pada mesin turbojet menjadi lebih mudah.

20140313-074850 AM.jpg
(a) Skema Siklus Brayton
(b) Diagram P-V Siklus Brayton
(c) Diagram T-s Siklus Brayton

Siklus Brayton melibatkan tiga komponen utama yakni kompresor, ruang bakar (combustion chamber), dan turbin. Media kerja udara atmosfer masuk melalui sisi inlet kompresor, melewati ruang bakar, dan keluar kembali ke atmosfer setelah melewati turbin. Fenomena-fenomena termodinamika yang terjadi pada siklus Brayton ideal adalah sebagai berikut:

(1-2) Proses Kompresi Isentropik
Udara atmosfer masuk ke dalam sistem turbin gas melalui sisi inlet kompresor. Oleh kompresor, udara dikompresikan sampai tekanan tertentu diikuti dengan volume ruang yang menyempit. Proses ini tidak diikuti dengan perubahan entropi, sehingga disebut proses isentropik. Proses ini ditunjukan dengan angka 1-2 pada kurva di atas.

(2-3) Proses Pembakaran Isobarik
Pada tahap 2-3, udara terkompresi masuk ke ruang bakar. Bahan bakar diinjeksikan ke dalam ruang bakar, dan diikuti dengan proses pembakaran bahan bakar tersebut. Energi panas hasil pembakaran diserap oleh udara (qin), meningkatkan temperatur udara, dan menambah volume udara. Proses ini tidak mengalami kenaikan tekanan udara, karena udara hasil proses pembakaran bebas berekspansi ke sisi turbin. Karena tekanan yang konstan inilah maka proses ini disebut isobarik.

(3-4) Proses Ekspansi Isentropik
Udara bertekanan yang telah menyerap panas hasil pembakaran, berekspansi melewati turbin. Sudu-sudu turbin yang merupakan nozzle-nozzle kecil berfungsi untuk mengkonversikan energi panas udara menjadi energi kinetik. Sebagian energi tersebut dikonversikan turbin untuk memutar kompresor. Pada sistem pembangkit listrik turbin gas, sebagian energi lagi dikonversikan turbin untuk memutar generator listrik. Sedangkan pada mesin turbojet, sebagian energi panas dikonversikan menjadi daya dorong pesawat oleh sebentuk nozzle besar pada ujung keluaran turbin gas. 

(4-1) Proses Pembuangan Panas
Tahap selanjutnya adalah pembuangan udara kembali ke atmosfer. Pada siklus Brayton ideal, udara yang keluar dari turbin ini masih menyisakan sejumlah energi panas. Panas ini diserap oleh udara bebas, sehingga secara siklus udara tersebut siap untuk kembali masuk ke tahap 1-2 lagi.

Turbo Jet


 
Mesin turbojet adalah mesin jet yang paling sederhana, biasanya dipakai untuk pesawat-pesawat jet awal atau pesawat-pesawat jet berkecepatan tinggi. Contoh dari mesin ini adalah mesin Rolls-Royce Olypus 593 yang digunakan untuk pesawat Concorde. Selain menggerakan pesawat, mesin ini juga bisa dipakai untuk menggerakan kereta api dan kapal laut, contohnya mesin Marine Olympus yang memiliki kekuatan 28.000 hp (daya kuda atau setara dengan 21 MW) yang digunakan untuk menggerakkan kapal perang modern dengan bobot mati 20.000 ton dengan operasi berkecepatan tinggi. Turbojet terdiri dari saluran masuk udara, kompresor udara, ruang pembakaran, turbin gas (yang menggerakkan kompresor udara) dan nozzle. Udara dikompresi ke dalam ruang bakar, dipanaskan dan dimuaikan dengan sangat cepat akibat proses pembakaran bahan bakar dan kemudian udara panas tersebut dibiarkan mengalir menuju turbin dengan kecepatan tinggi untuk memberikan propulsi yang kemudian digunakan untuk memutar kompresor.

Sejarah Turbo Jet
Perkembangan mesin jet dimulai pada tahun 1930an oleh seorang insinyur dari Inggris yang bernama Frank Whittle yng harus bekerja di gedung tua milik Angkatan Udara Inggris yang bermarkas di Farnborough, Hampshire. Penggunaan mesin jet pertamanya WU1 pada tahun 1937. Di Jerman Hans von Ohain dan Ernst Heinkel merancang mesin jet yang sama dan digunakan pada tahun 1939 untuk pesawat Heinkel He178. Pada tahun 1950 dimulailah penerbangan pesawat jet komersial. Orang bisa melakukan perjalanan dengan lebih cepat, perjalanan dari London sampai Sidney dapat ditempuh kurang dari dua hari. Termasuk cepat untuk ukuran waktu itu. Perbaikan kualitas terus dilakukan dilakukan terus dilakukan oleh pabrikan selain kapasitas produksinya ditambah akibat meningkatnya permintaan pasar akan pesawat terbang komersial.
Pesawat jet komersial yang paling terkenal adalah Boeing 747, yang memulai penerbangannya tahun 1970. Keberadaan pesawat produksi Boeing mendapat saingan berat dari Airbus, pabrikan pesawat konsorsium negara-negara Eropa. Produksi pesawat berbadan lebar yang terbaru dari Boeing adalah 787 Dream Liner, sedangkan Airbus meluncurkan A380.

Sistem Penggerak Turbo Jet
Pada mesin turbo jet terdapat ruang bakar, di mana bahan bakar yang telah dimampatkan dialirkan ke ruang bakar, gas hasil pembakaran menyembur dari belakang dan mendorong mesin ke depan. Daya dorong mesin jet sangat besar karena dihasilkan dari hasil pembakaran gas bertekanan tinggi.

Bagian- bagian Mesin Turbo jet
Bagian-bagian mesin turbo terdiri dari air inlet (saluran udara), sirip compressor dan sirip stator, saluran bahan bakar (fuel in), ruang pembakaran (combuster), daun turbin dan saluran buang (exhaust).
JetEngineGraph-LiftFan.PNG

Prinsip Kerja Turbo Jet
Dari gambar bagian-bagian mesin turbo jet di bawah, prinsip kerja dari mesin turbo jet adalah sebagai berikut:
  • Udara segar masuk melalui saluran udara (air inlet)
  • Udara yang masuk kemudian dikompresi (ditekan) saat melewati sirip kompresi (sirip yang bergerak/compressor blade) dan sirip diam (stator blade). Udara bertekanan tinggi ini dicampur dengan bahan bakar sehingga terjadi ledakan di ruang bakar yang menghasilkan daya dorong ke depan melalui daun turbin (turbines blades) yang letaknya di belakang ruang bakar (combustor).
Mesin turbo jet pesawat komersial yang telah dibuat mampu mendorong pesawat dengan kecepatan melebihi kecepatan suara seperti pada pesawat komersial supersonic Concorde, yang pernah digunakan maskapai penerbangan British Airways dan Air Frace, walaupun sekarang dihentikan pengoperasiannya karena besarnya biaya operasional.

Proses Pembuatan Garam


Garam merupakan komoditas yang sangat penting bagi kehidupan masyarakat kita, bayangkan saja jika tidak ada garam akan hambar terasa hidup kita begitu kata pepatah mengatakan. Garam tidak hanya bisa dijadikan bahan konsumsi namun garam juga bisa dikategorikan dalam bahan industri, seperti industri penyamakan kulit, pengeboran minyak lepas pantai dll.
IMG_0374 

Garam Krosok
Proses pembuatan garam secara tradisional bisa dibilang ada dua jenis yaitu dengan metode penguapan dengan sinar matahari di tambak-tambak garam dan dengan cara teknik perebusan (garam rebus).
Untuk proses pembuatan garam dengan penguapan sinar matahari biasanya para petani garam membuat garam dengan metode petakan-petakan untuk penguapan, untuk mendapatkan hasil garam yang baik dengan kristal yang besar, petani garam biasanya secara langsung menguapkan air laut yang dialirkan pada petakan-petakan untuk menghasilkan kadar baume (massa jenis cairan/kepekatan/kekentalan) yang tinggi sekitar 20-25 Be (untuk pengukuran menggunakan Baumemeter) tapi biasanya untuk petani tradisional mereka menggunakan insting saja, sangat jarang sekali petani tradisional menggunakan alat baumemeter.

IMG_0164 

Proses Pembuatan Garam di Tambak Garam
Setelah mengalirkan air pada tiap petakan untuk menghasilkan kadar baume yang diinginkan dengan teknik penguapan sinar matahari, setelah itu air laut dimasukan ke petakan khusus untuk meja garam lalu diuapkan dengan sinar matahari selama 7 hari lalu dengan sendirinya air tersebut akan berkurang dan menjadi Kristal garam.
Beda halnya dengan proses perebusan garam, untuk proses pembuatan garam dengan metode perebusan yang tradisional biasanya pertama kali yaitu dengan menggunakan garam yang masih kasar yang sudah jadi lalu dilarutkan dengan air, setelah air sudah tercampur dan garam sudah terlarut air tersebut biasanya difilter (disaring) agar air jernih, setelah melalui proses penyaringan air tersebut direbus dengan menggunakan bara api sekitar 3-4 jam bahkan lebih, setelah itu jadilah garam rebus. Perbedaan garam rebus dengan pembuatan garam yang mengunakan teknik penguapan panas matahari ialah jika garam rebus hasilnya lebih halus sedangkan garam dengan menggunakan pemanasan matahari akan lebih kasar (Kristal garam).

IMG_1022 

Proses Pembuatan Garam dengan Metode Perebusan
Namun, pada dasarnya teknik pembuatan garam itu berdasarkan hasil penguapan dari air laut baik dengan menggunakan cara direbus ataupun dengan penguapan sinar matahari.

Cara Kerja Pendingin Air Pada Dispenser






















Jika pada posting sebelumnya telah dibahas mengenai [Cara Kerja Pemanas Air Pada Dispenser] maka pada posting kali ini akan membahas mengenai Cara Kerja Pendingin Air Pada Dispenser. Pada umumnya proses pemanasan dan pendinginan air pada dispenser berawal dari tampungan air pertama yang berfungsi untuk membagi air yang selanjutnya akan diproses menjadi air panas dan air dingin. Proses pendinginan air pada dispenser pada umumnya dibedakan menjadi 2 yaitu:     
1. Pendinginan Air dengan Fan       
Proses pendinginan air menggunakan fan dilakukan dengan cara menghisap suhu tinggi pada air ketika air berada pada tampungan air kedua yang letaknya berada dibawah tampungan air pertama, namun pada kenyataannya fan hanya alat bantu untuk mempercepat pembuangan panas pada air, sehingga temperatur air hanya akan turun sedikit saja. Setelah melewati tampungan air kedua air akan dikeluarkan melalui keran dan siap untuk diminum.   
 2. Pendinginan Air dengan Sistem Refrigran       
Pendinginan air pada dispenser menggunakan sistem refrigran sama seperti sistem refrigran pada kulkas hanya saja evaporatornya dimasukkan kedalam tampungan air kedua yang berada dibawah tampungan air pertama, sehingga air disekitar evapurator akan menjadi air dingin. Hasil pendinginan air pada dispenser menggunakan sistem refrigran lebih maksimal dibandingkan pendinginan air menggunakan fan. Setelah air melalui proses pendinginan pada tampungan air kedua, air akan mengalir dan keluar melalui keran.  Demikianlah cara kerja pendinginan air pada dispenser, beberapa dispenser proses pendinginan dilakukan pada tampungan air yang pertama, sehingga tampungan air yang kedua tidak ada.

Cara Kerja Pemanas Air Pada Dispenser


 


















Dispenser merupakan alat untuk mengalirkan air dari galon air kedalam cakir/gelas namun saat ini dispenser memiliki fungsi tambahan diantaranya untuk memanaskan air, bagaimana cara kerja pemanas air pada dispenser? Proses air mengalir dari galon yang bersuhu normal hingga sampai kedalam cangkir/gelas yang bersuhu panas melalui beberapa komponen mulai dari galon air kemudian mengalir kedalam tampungan yang kemudian mengalir kedalam tabung pemanas dan kemudian air mengalir dalam keadaan panas melalui keran, proses pemanasan air terjadi pada saat air masuk kedalam tabung pemanas. Tabung pemanas merupakan tabung yang terbuat dari logam yang disekitar tabung tersebut dikelilingi oleh elemen pemanas, sehingga ketika air mengalir dari tampungan menuju tabung pemanas sensor suhu yang ada pada tabung pemanas akan memicu elemen pemanas untuk bekerja, suhu tinggi yang dihasilkan elemen pemanas diserap oleh air yang suhunya lebih rendah, setelah suhu air dalam tabung pemanas tinggi maksimal sensor suhu yang ada pada tabung pemanas akan memutuskan arus listrik pada elemen pemanas, pada saat elemen pemanas menyala lampu indikator pemanas menyala dan pada saat elemen pemanas mati lampu indikator pemanas mati. Setelah lampu indikator pemanas mati dan air pada tabung pemanas sudah mencapai suhu tinggi maksimal maka air panas siap digunakan. Yang perlu diingat ketika menyalakan pemanas pada dispenser adalah pastikan air pada tabung pemanas penuh, sebab jika tabung pemanas dalam keadaan kosong dan elemen pemanas bekerja maka suhu tinggi yang dihasilkan oleh elemen pemanas tidak terserap oleh air dan akan merusak tabung pemanas dan komponen lain disekitar tabung pemanas karena terkena panas yang terlalu tinggi.
Itulah cara kerja pemanas air pada dispenser.